
802.11 e WiMAX: prestazioni a confronto ed analisi di possibili Business Plan per i Service Provider

Review Pack

Questa Review Pack contiene:

- Sommario
- WiTech
- Gli Autori del report
- Come realizzare il tuo business plan
- Come prenotare il tuo "Consulting Day"
- Indice
- Elenco delle Figure
- Elenco delle Tabelle
- Form per l'ordine

Andrea Calcagno e Elena Briola • WiTech • Aprile 2006

www.witech.it

-2-

SOMMARIO

802.11 e WiMAX: prestazioni a confronto ed analisi dei possibili Business Plan per i Service Provider presenta un confronto dettagliato delle prestazioni delle tecnologie WiMAX (Worldwide Interoperability for Microwave Access) e 802.11 e un'analisi dei possibili business case. Tale report è un valido strumento per i service provider, i vendor, gli analisti, i consulenti, gli investitori e gli enti regolatori delle telecomunicazioni che vogliono capire quali sono le potenzialità delle tecnologie WiMAX and 802.11 e quali opportunità economiche esse offrono in differenti scenari e configurazioni di rete, per diversi servizi e segmenti di mercato.

Argomenti affrontati

- Overview delle tecnologie BWA
- Possibili architetture di rete (punto-punto, punto-multipunto, reti mesh)
- Criteri per un corretto design di reti BWA (modelli di path loss model; pianificazione della capacità, della copertura e della frequenza)
- Portfolio di servizi offerti dall'operatore (PIR, overbooking factor, ARPU)
- Analisi dei possibili business plan in diversi scenari di deployment (urbano, suburbano, exurbano e rurale)

Benefici del report

- Valore aggiunto: il report include il planning tool TEABWA[™] in Excel che consente di realizzare un'analisi tecnico-economica dettagliata
- Accurato e oggettivo: le assunzioni fatte sono basate su specifiche da standard e sono dettate dall'esperienza o da audit con operatori, system integrator, vendor o aziende costruttrici
- Consistente: le metriche usate per realizzare i confronti tra le tecnologie sono accuratamente dettagliate

Domande a cui poter trovare una risposta

- Come evolverà il broadband wireless?
- Quale tecnologia prevarrà nei differenti mercati?
- Come operano le tecnologie WiMAX e 802.11 in uno scenario outdoor?
- Come le tecnologie WiMAX e 802.11 raggiungono il trade-off tra capacità e copertura?
- Quali sono le opportunità economiche che WiMAX e 802.11 offrono e quali sono i fattori critici che ne influenzano la fattibilità economica?
- Come confrontare i business plan relativi a WiMAX e 802.11?
- Quale tecnologia scegliere in uno specifico scenario di deployment e per differenti servizi o segmenti di mercato?

Copyright © 2006 - WiTech

- 3 –

Chi potrebbe usare il report

- Service provider
- Vendor e system integrator
- Analisti e consulenti
- Investitori
- Enti regolatori delle Telecomunicazioni

Produttori menzionati

Adaptix Kyocera Radionet Airspan Lobometrics Redline Alvarion Motorola Repeatit Aperto Navini Samsung Netkrom Axxcelera Skypilot **Brovis** NextNet Siemens Cambridge Broadband Nex-G Smartbridges **Demarc Technology Group** Nortel SR Telecom InfiNet Wireless Osbridge Waverider **IP Wireless** Wi-LAN Proxim

Broadband provider menzionati

FON Airband Telabria Airzed Telefonica Iberbanda Aloha Partners LP INDOSATM2 Telemar Altitude Telecom Telenor Inukshuk Arab Telecom Teleunit Igara **AXTEL** TeliaSonera Irish Broadband **BellSouth KT** Corporation The Cloud

BT Metrobridge Time Warner Telecom

ButlerNetworks Nettare TowerStream
Cellcom Nextadsl UNITLINE

China Motion Telecom International NextGenTel Unwired Australia
Clearwire NextWeb U.S. Wireless Online

Comcast CorporationPIPEXVideobankEAccessSprintWivanetErtachStart TelecomWivereEuskaltelStoneBridge Wireless BroadbandYOZAN

Finnet TDC

Copyright © 2006 - WiTech

Vietata la riproduzione

AZIENDA SPINOFF DELL'UNIVERSITÀ DI PISA

- 4 –

WITECH

WiTech, Spin-off dell'Università di Pisa, opera nel settore delle tecnologie broadband wireless, quali 802.11, WiMAX, 802.20, UMTS/WCDMA, HSDPA, IMT-2000, EV-DO, e, grazie al proprio team di professionisti, fornisce servizi ingegneristici ad elevato valore aggiunto.

Si presenta come supporto ideale degli operatori e delle nuove start-up che vogliono entrare nel mondo del broadband wireless, perché è in grado di espletare tutte le fasi operative necessarie per le attività di un WISP, dalla redazione del business plan al deployment della rete. Svolge attività di consulenza tecnico-economica: infatti, con l'ausilio del planning tool TEABWATM, è in grado di realizzare una dettagliata analisi sia tecnica sia economica delle tecnologie Broadband Wireless Access. È impegnata in molteplici attività di ricerca per lo sviluppo di soluzioni innovative, quali la piattaforma WROPTM (Wireless Radius Operator Platform), il NOC Multi Livello per un sistema di AAA per tecnologie broadband wireless.

Per ulteriori informazioni puoi visitare il nostro sito www.witech.it o contattarci a info@witech.it o al +39 050 754 720.

GLI AUTORI DEL REPORT

Andrea Calcagno è esperto in analisi tecnico-economiche per tecnologie broadband wireless. Si è laureato in Ingegneria delle Telecomunicazioni presso l'Università di Pisa. Dopo un'esperienza nei laboratori di Ricerca e Sviluppo di Telecom Italia e molteplici attività di consulenza nel settore del wireless, ha fondato la WiTech e attualmente ne è il CEO. Andrea Calcagno può essere contattato a andrea.calcagno@witech.it.

Elena Briola si è laureata in Ingegneria delle Telecomunicazioni presso l'Università di Pisa. Dopo un'esperienza nei laboratori di Ricerca e Sviluppo di Telecom Italia, è stata assunta da WiTech come project manager del team TEA che ha sviluppato il tool TEABWATM. È esperta in tecnologie wireless, quali 802.11 e WiMAX, e nei sistemi MIMO. Elena Briola può essere contattata a elena.briola@witech.it

Copyright © 2006 - WiTech

AZIENDA SPINOFF
DELL'UNIVERSITÀ DI PISA

- 5 –

COME REALIZZARE IL TUO BUSINESS PLAN

Se sei interessato a realizzare un business plan, facendo delle assunzioni personali sia tecniche sia economiche, puoi acquistare il planning tool TEABWATM in Excel. Tale tool è stato sviluppato da WiTech e consente di valutare le prestazioni e la fattibilità economica delle tecnologie BWA.

Il planning tool TEABWATM, come indicato nella Figura i.1, dà la possibilità di progettare l'infrastruttura di rete e di valutare le opportunità di business per il BWA e di stimare i costi e alcuni indicatori finanziari, quali il NPV e il PBP, relativi all'investimento in esame.

Per ulteriori informazioni riguardo il planning tool TEABWATM o per acquistarlo puoi visitare il sito www.witech.it o contattarci a teabwa@witech.it.

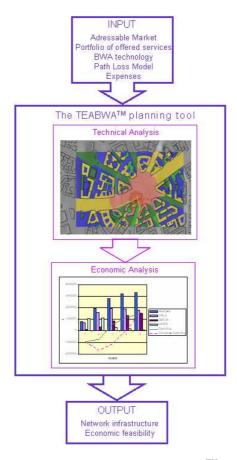


Figura i.1 – II planning tool TEABWA™

Copyright © 2006 - WiTech

- 6 –

COME PRENOTARE IL TUO "CONSULTING DAY"

L'acquisto del report ti dà diritto a partecipare gratuitamente al "Consulting Day" presso la sede di WiTech:

Polo Tecnologico di Navacchio Via Giuntini 25 int.30 56023 Navacchio di Cascina (PI)

Il "Consulting Day" ha la durata di quattro ore e ti dà l'opportunità di rivolgere delle domande agli autori del report per discutere sugli argomenti affrontati, sulle assunzioni fatte o sull'approccio utilizzato per realizzare l'analisi tecnico-economica presentata.

Per prenotare il tuo "Consulting Day" invia semplicemente una mail a report@witech.it.

Copyright © 2006 - WiTech

- 7 –

INDICE

0 Prefazione

1 Introduzione

- 1.1 II BWA come soluzione per l'ultimo miglio
- 1.2 Scopo del report
- 1.3 La roadamap del report

2 Le tecnologie Broadband Wireless Access per i service provider

- 2.1 Panoramica sulle tecnologie
- 2.2 Analisi dello spettro in Europa e negli USA
- 2.3 Architetture di rete

3 802.11 e il Fixed Wireless Access

- 3.1 Come lavorano le tecnologie 802.11 in uno scenario outdoor
- 3.2 Prestazioni e copertura nelle diverse bande frequenziali

4 WiMAX: la nuova soluzione per gli scenari fissi e mobili

- 4.1 Le tecnologie 802.16
- 4.2 Come lavorano le tecnologie 802.16
- 4.3 II WiMAX Forum
- 4.4 Le tecnologie WiMAX e le tecnologie 802.16
- 4.5 Prestazioni e copertura nelle diverse bande frequenziali

5 Progetto di sistemi Fixed Broadband Wireless Access

- 5.1 Considerazioni sul progetto di una rete wireless
- 5.2 Analisi del link budget
- 5.3 Path Loss Model
- 5.4 Pianificazione della copertura
- 5.5 Pianificazione frequenziale di rete

6 Assunzioni per l'analisi tecnico-economica

- 6.1 Assunzioni Tecniche
- 6.2 Assunzioni Economiche
- 6.3 Indicatori Finanziari

7 Analisi finanziaria dei sistemi FBWA basati sulla tecnologia 802.11

- 7.1 Business Plan per lo scenario urbano
- 7.2 Business Plan per lo scenario suburbano
- 7.3 Business Plan per lo scenario exurbano
- 7.4 Business Plan per lo scenario rurale
- 7.5 Confronto tra i diversi scenari di servizio

Copyright © 2006 - WiTech

-8-

8 Analisi finanziaria dei sistemi FBWA basati sulla tecnologia WiMAX

- 8.1 Business Plan per lo scenario urbano
- 8.2 Business Plan per lo scenario suburbano
- 8.3 Business Plan per lo scenario exurbano
- 8.4 Business Plan per lo scenario rurale
- 8.5 Confronto tra i diversi scenari di servizio

9 Analisi di sensitività per reti Fixed Broadband Wireless Access

- 9.1 Sensitività al wireless broadband adoption rate
- 9.2 Sensitività alla Market Penetration Function
- 9.3 Sensitività alla distribuzione delle SU
- 9.4 Sensitività all'ampiezza di banda del canale
- 9.5 Sensitività al formato del duplexing
- 9.6 Sensitività al costo del dispositivo SU

10 Confronto tra 802.11 e WiMAX

- 10.1 Confronto tecnico
- 10.2 Confronto economico

11 Conclusioni

Annesso A Soluzioni basate sugli standard e proprietarie


Annesso B Produttori

Annesso C Broadband Provider

Annesso D Overview del modello TEABWA™

Annesso E Modelli di Path Loss

Annesso F Acronimi Annesso G Bibliografia

- 9 -

ELENCO DELLE FIGURE

Figura	i.1	- II	plannir	na tool	ITEAI	3WA	TM

Figura 1.1 – Nuove caratteristiche della tecnologia 80	12	80	1	logia	tecno	della	caratteristiche	Nuove	1 1	Figura
--	----	----	---	-------	-------	-------	-----------------	-------------------------	-----	--------

- Figura 1.2 Infrastruttura 802.11
- Figura 1.3 Infrastruttura WiMAX
- Figura 1.4 Infrastruttura 802.11 e WiMAX
- Figura 1.5 Roadmap del report
- Figura 2.1 Modalità d'accesso e velocità di trasmissione delle tecnologie basate sugli standard per il BWA
- Figura 2.2 Esempio di rete FBWA PTP
- Figura 2.3 Esempio di rete FBWA PMP
- Figura 2.4 Esempio di rete FBWA Mesh
- Figura 3.1 Allocazione delle frequenze per applicazioni 802.11 outdoor in Europa
- Figura 3.2 Allocazione delle frequenze per applicazioni 802.11 outdoor negli USA
- Figura 3.3 Esempio di DSSS
- Figura 3.4 Rappresentazione temporale-frequenziale dell'OFDM
- Figura 3.5 AMC in presenza di shadowing
- Figura 3.6 Schema del TDD
- Figura 3.7 Esempio di rete 802.11 in uno scenario outdoor
- Figura 3.8 Raggio di copertura per la tecnologia 802.11a in Europa
- Figura 3.9 Raggio di copertura per la tecnologia 802.11g in Europa
- Figura 3.10 Raggio medio della tecnologia 802.11a in Europa
- Figura 3.11 Raggio medio della tecnologia 802.11g in Europa
- Figura 3.12 Raggio di copertura della tecnologia 802.11a negli USA
- Figura 3.13 Raggio di copertura della tecnologia 802.11g negli USA
- Figura 3.14 Raggio medio della tecnologia 802.11a negli USA
- Figura 3.15 Raggio medio della tecnologia 802.11g negli USA
- Figura 4.1 Range frequenziale per applicazioni 802.16
- Figura 4.2 Schema del TDMA
- Figura 4.3 Schema della OFDMA
- Figura 4.4 Schema della SOFDMA

Copyright © 2006 - WiTech

- 10 **-**

- Figura 4.5 Schema del FDD
- Figura 4.6 Tecnologie WiMAX e 802.16
- Figura 4.7 Esempio di rete 802.16-2004 WiMAX
- Figura 4.8 Raggio di copertura per la tecnologia 802.16-2004 WiMAX nella banda dei 3.5 GHz Band con SU indoor
- Figura 4.9 Raggio di copertura per la tecnologia 802.16-2004 WiMAX nella banda dei 3.5 GHz Band con SU outdoor
- Figura 4.10 Raggio di copertura per la tecnologia 802.16-2004 WiMAX nella banda dei 5.8 GHz Band con SU indoor
- Figura 4.11 Raggio di copertura per la tecnologia 802.16-2004 WiMAX nella banda dei 5.8 GHz Band con SU outdoor
- Figura 4.12 Raggio medio della tecnologia 802.16-2004 WiMAX nella banda dei 3.5 GHz con SU indoor
- Figura 4.13 Raggio medio della tecnologia 802.16-2004 WiMAX nella banda dei 3.5 GHz con SU outdoor
- Figura 4.14 Raggio medio della tecnologia 802.16-2004 WiMAX nella banda dei 5.8 GHz con SU indoor
- Figura 4.15 Raggio medio della tecnologia 802.16-2004 WiMAX nella banda dei 5.8 GHz con SU outdoor
- Figura 5.1 Meccanismi fisici di radio propagazione
- Figura 5.2 0.6 First Fresnel Zone
- Figura 5.3 Diagramma di flusso per il calcolo della potenza ricevuta
- Figura 5.4 Valutazione della potenza ricevuta
- Figura 5.5 Potenza ricevuta al variare della distribuzione delle SU
- Figura 5.6 Confronto tra i modelli di Path Loss nella banda dei 2.4 GHz in uno scenario suburbano
- Figura 5.7 Confronto tra i modelli di Path Loss nella banda dei 3.5 GHz in uno scenario suburbano
- Figura 5.8 Confronto tra i modelli di Path Loss nella banda dei 5.8 GHz in uno scenario suburbano
- Figura 5.9 Diagramma di flusso per il calcolo del Massimo Path Loss
- Figura 5.10 Modello di riuso della frequenza: 4 settori e 2 canali frequenziali
- Figura 5.11 Modello di riuso della frequenza: 6 settori e 2 canali frequenziali
- Figura 5.12 Modello di riuso della frequenza utilizzando la polarizzazione verticale e orizzontale
- Figura 6.1 Principali caratteristiche della tecnologia 802.11a
- Figura 6.2 Throughput netto di un settore della BS a livello IP per la tecnologia 802.11
- Figura 6.3 Principio di ottimizzazione per un'infrastruttura 802.11

Copyright © 2006 - WiTech

- 11 –

- Figura 6.4 Principali caratteristiche del profilo di certificazione 3.5 GHz, 7 MHz, FDD
- Figura 6.5 Throughput netto di un settore della BS a livello IP per la tecnologia
- Figura 6.6 Principio di ottimizzazione per un'infrastruttura 802.16-2004 WiMAX
- Figura 6.7 Estensione dell'area geografica e densità di popolazione
- Figura 6.8 "Broadband Adoption Rate" e "Wireless Broadband Adoption Rate"
- Figura 6.9 Distribuzione dei potenziali utenti wireless tra le varie classi d'utenza
- Figura 6.10 Distribuzione delle SU per un'infrastruttura 802.16-2004 WiMAX
- Figura 6.11 PIR e CIR
- Figura 6.12 ARPU
- Figura 6.13 Altre fonti per i ricavi
- Figura 6.14 Roll-out Function
- Figura 6.15 Market Penetration Function per tutti gli scenari di servizio
- Figura 6.16 CAPEX totali
- Figura 6.17 OPEX totali
- Figura 6.18 CAPEX relativi al Service Center (35 BS)
- Figura 6.19 OPEX relativi al Service Center (35 BS)
- Figura 6.20 CAPEX relativi alla BS (3 settori) per un'applicazione 802.11
- Figura 6.21 CAPEX relativi alla BS (3 settori) per un'applicazione WiMAX
- Figura 6.22 OPEX relativi alla BS (3 settori) per un'applicazione 802.11 e WiMAX
- Figura 6.23 CAPEX relativi alla SU (1000 utenti) per un'applicazione 802.11
- Figura 6.24 OPEX relativi alla SU (1000 utenti) per un'applicazione 802.11
- Figura 6.25 CAPEX relativi alla SU (1000 utenti) per un'applicazione WiMAX
- Figura 6.26 OPEX relativi alla SU (1000 utenti) per un'applicazione WiMAX
- Figura 7.1 Potenziali utenti e richiesta di traffico nello scenario urbano
- Figura 7.2 Caratteristiche della BS 802.11 nello scenario urbano
- Figura 7.3 Numero di BS e di utenti nello scenario urbano
- Figura 7.4 CAPEX per un'infrastruttura 802.11 nello scenario urbano
- Figura 7.5 OPEX per un'infrastruttura 802.11 nello scenario urbano
- Figura 7.6 Analisi finanziaria per un'infrastruttura 802.11 nello scenario urbano
- Figura 7.7 Potenziali utenti e richiesta di traffico nello scenario suburbano
- Figura 7.8 Caratteristiche della BS 802.11 nello scenario suburbano
- Figura 7.9 Numero di BS e di utenti nello scenario suburbano
- Figura 7.10 CAPEX per un'infrastruttura 802.11 nello scenario suburbano
- Figura 7.11 OPEX per un'infrastruttura 802.11 nello scenario suburbano

Copyright © 2006 - WiTech

- 12 -

- Figura 7.12 Analisi finanziaria per un'infrastruttura 802.11 nello scenario suburbano
- Figura 7.13 Potenziali utenti e richiesta di traffico nello scenario exurbano
- Figura 7.14 Caratteristiche della BS 802.11 nello scenario exurbano
- Figura 7.15 Numero di BS e di utenti nello scenario exurbano
- Figura 7.16 CAPEX per un'infrastruttura 802.11 nello scenario exurbano
- Figura 7.17 OPEX per un'infrastruttura 802.11 nello scenario exurbano
- Figura 7.18 Analisi finanziaria per un'infrastruttura 802.11 nello scenario exurbano
- Figura 7.19 Potenziali utenti e richiesta di traffico nello scenario rurale
- Figura 7.20 Caratteristiche della BS 802.11 nello scenario rurale
- Figura 7.21 Numero di BS e di utenti nello scenario rurale
- Figura 7.22 CAPEX per un'infrastruttura 802.11 nello scenario rurale
- Figura 7.23 OPEX per un'infrastruttura 802.11 nello scenario rurale
- Figura 7.24 Analisi finanziaria per un'infrastruttura 802.11 nello scenario rurale
- Figura 7.25 Analisi finanziaria di un'infrastruttura 802.11 nei diversi scenari di servizio
- Figura 8.1 Distribuzione delle SU nello scenario urbano
- Figura 8.2 Caratteristiche della BS WiMAX nello scenario urbano
- Figura 8.3 CAPEX per un'infrastruttura WiMAX nello scenario urbano
- Figura 8.4 OPEX per un'infrastruttura WiMAX nello scenario urbano
- Figura 8.5 Analisi finanziaria per un'infrastruttura WiMAX nello scenario urbano
- Figura 8.6 Distribuzione delle SU nello scenario suburbano
- Figura 8.7 Caratteristiche della BS WiMAX nello scenario suburbano
- Figura 8.8 CAPEX per un'infrastruttura WiMAX nello scenario suburbano
- Figura 8.9 OPEX per un'infrastruttura WiMAX nello scenario suburbano
- Figura 8.10 Analisi finanziaria per un'infrastruttura 802.11 nello scenario suburbano
- Figura 8.11 Potenziali Distribuzione delle SU nello scenario exurbano
- Figura 8.12 Caratteristiche della BS WiMAX nello scenario exurbano
- Figura 8.13 CAPEX per un'infrastruttura WiMAX nello scenario exurbano
- Figura 8.14 OPEX per un'infrastruttura 802.11 nello scenario exurbano
- Figura 8.15 Analisi finanziaria per un'infrastruttura 802.11 nello scenario exurbano
- Figura 8.16 Potenziali utenti e richiesta di traffico nello scenario rurale
- Figura 8.17 Caratteristiche della BS WiMAX nello scenario rurale
- Figura 8.18 CAPEX per un'infrastruttura WiMAX nello scenario rurale
- Figura 8.19 OPEX per un'infrastruttura WiMAX nello scenario rurale
- Figura 8.20 Analisi finanziaria per un'infrastruttura WiMAX nello scenario rurale

Copyright © 2006 - WiTech

- 13 –

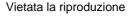

- Figura 8.21 Analisi finanziaria di un'infrastruttura WiMAX nei diversi scenari di servizio
- Figura 9.1 Wireless Broadband Adoption Rate
- Figura 9.2 Sensitività al wireless broadband adoption rate per un'infrastruttura 802.11
- Figura 9.3 Sensitività al wireless broadband adoption rate per un'infrastruttura WiMAX
- Figura 9.4 Market Penetration Function
- Figura 9.5 Sensitività alla Market Penetration Function per un'infrastruttura 802.11
- Figura 9.6 Sensitività alla Market Penetration Function per un'infrastruttura WiMAX
- Figura 9.7 Distribuzione delle SU
- Figura 9.8 Sensitività alla distribuzione delle SU per un'infrastruttura WiMAX
- Figura 9.9 Sensitività all'ampiezza di banda del canale per un'infrastruttura WiMAX
- Figura 9.10 Sensitività al formato del duplexing per un'infrastruttura WiMAX
- Figura 9.11 Costo del dispositivo SU
- Figura 9.12 Sensitività al costo del dispositivo SU per un'infrastruttura WiMAX
- Figura 10.1 Raggio di copertura e minimo numero di BS
- Figura 10.2 Capacità per BS fornita in down link e in up link
- Figura 10.3 Numero di BS
- Figura 10.4 Confronto WiMAX 802.11 nello scenario urbano
- Figura 10.5 Confronto WiMAX 802.11 nello scenario suburbano
- Figura 10.6 Confronto WiMAX 802.11 nello scenario exurbano
- Figura 10.7 Confronto WiMAX 802.11 nello scenario rurale

Figura D.1 – Diagramma di flusso del modello TEABWA[™]

- 14 –

ELENCO DELLE TABELLE

- Tabella 2.1 Tecnologie basate sugli standard per il BWA
- Tabella 2.2 Overview delle tecnologie basate sugli standard per BWA
- Tabella 2.3 Bande per applicazioni BWA in Europa
- Tabella 2.4 Bande per applicazioni BWA negli USA
- Tabella 3.1 Principali caratteristiche delle tecnologie 802.11
- Tabella 3.2 Velocità di trasmissione per la tecnologia 802.11b
- Tabella 3.3 Velocità di trasmissione per le tecnologie 802.11a/g
- Tabella 3.4 Parametri del modello di Path Loss
- Tabella 3.5 Caratteristiche della BS e della SU outdoor per la tecnologia 802.11a in Europa
- Tabella 3.6 Caratteristiche della BS e della SU outdoor per la tecnologia 802.11g in Europa
- Tabella 3.7 Caratteristiche della BS e della SU outdoor per la tecnologia 802.11a negli USA
- Tabella 3.8 Caratteristiche della BS e della SU outdoor per la tecnologia 802.11g negli USA
- Tabella 4.1 Principali caratteristiche delle tecnologie 802.16
- Tabella 4.2 Velocità di trasmissione supportate dalla OFDM con 256 sottoportanti
- Tabella 4.3 Velocità di trasmissione supportate dalla OFDMA con 2048 sottoportanti
- Tabella 4.4 Profili della prima fase del processo di certificazione del WiMAX Forum
- Tabella 4.5 Parametri utilizzati nel modello di Path Loss
- Tabella 4.6 Caratteristiche della BS e della SU per la tecnologia 802.16-2004 WiMAX nella banda dei 3.5 GHz
- Tabella 4.7 Caratteristiche della BS e della SU per la tecnologia 802.16-2004 WiMAX nella banda dei 5.8 GHz
- Tabella 5.1 Parametri per il calcolo della potenza ricevuta
- Tabella 5.2 Parametri dei modelli di Path Loss
- Tabella 5.3 Parametri per la pianificazione di copertura di rete
- Tabella 5.4 Risultati della pianificazione di copertura di rete
- Tabella 6.1 Configurazione della BS per la tecnologia 802.11 nella banda dei 5.6 GHz
- Tabella 6.2 Configurazione della BS per la tecnologia 802.16-2004 WiMAX
- Tabella 6.3 Parametri per il calcolo del raggio medio nelle applicazioni 802.11 e WiMAX
- Tabella 6.4 Peculiarità dei servizi offerti
- Tabella 7.1 Indicatori finanziari per un'infrastruttura 802.11 nello scenario urbano
- Tabella 7.2 Indicatori finanziari per un'infrastruttura 802.11 nello scenario suburbano
- Tabella 7.3 Indicatori finanziari per un'infrastruttura 802.11 nello scenario exurbano

Copyright © 2006 - WiTech

- 15 –

- Tabella 7.4 Indicatori finanziari per un'infrastruttura 802.11 nello scenario rurale
- Tabella 7.5 Riepilogo degli indicatori finanziari per un'infrastruttura 802.11 nei diversi scenari di servizio
- Tabella 8.1 Indicatori finanziari per un'infrastruttura WiMAX nello scenario urbano
- Tabella 8.2 Indicatori finanziari per un'infrastruttura WiMAX nello scenario suburbano
- Tabella 8.3 Indicatori finanziari per un'infrastruttura WiMAX nello scenario exurbano
- Tabella 8.4 Indicatori finanziari per un'infrastruttura WiMAX nello scenario exurbano
- Tabella 8.5 Riepilogo degli indicatori finanziari per un'infrastruttura WiMAX nei diversi scenari di servizio
- Tabella 10.1 Numero di settori per BS
- Tabella E.1 Valori tipici dell'esponente di path loss
- Tabella E.2 Parametri medi per la banda MMDS sui 2.5 GHz
- Tabella E.3 Parametri valutati sulla banda MMDS da 2.5 GHz a 2.7 GHz

Copyright © 2006 - WiTech

- 16 -

FORM PER L'ORDINE

Nome	
Cognome	
Email	
Ragione sociale	
Telefono	
Indirizzo	
Città / CAP	

Inserisci le informazioni per contattarti

Il pacchetto "Report + Planning Tool" al prezzo di €3.000,00

L'offerta è valida fino al 31 Maggio 2006

Invia il form compilato a

WiTech, Spin Off dell'Università di Pisa

Fax: +39 050 754 722
Mail: Polo Tecnologico di Navacchio,
Via Giuntini 25 int.30,
56023, Navacchio di Cascina (PI), ITALY
report@witech.it

Senza Fili Consulting

Fax: +1 206 350 5295 Mail: 602 216th Ave NE, Sammamish WA, 9874, USA sales@senzafiliconsulting.com

Scegli l'opzione per il tuo ordine

Solo il report

Licenza per un singolo utente

- □ Copia elettronica (PDF) €2.500,00
- □ Copia cartacea + Copia elettronica (PDF) €3.000,00

Licenza per l'intera società

- □ Copia elettronica (PDF) €5.400,00
- □ Copia cartacea + Copia elettronica (PDF) €5.800,00

Il report e il planning tool TEABWATM

Licenza per un singolo utente

- □ Copia elettronica (PDF, Excel) €4.200,00
- □ Copia cartacea + Copia elettronica (PDF, Excel) €4.600,00

Licenza per l'intera società

- □ Copia elettronica (PDF, Excel) €8.700,00
- □ Copia cartacea + Copia elettronica (PDF, Excel) €9.150,00

Ulteriori domande?

WiTech, Spin Off dell'Università di Pisa

+39 050 754 720 report@witech.it www.witech.it

Senza Fili Consulting

+1 425 657 4991 sales@senzafiliconsulting.com www.senzafiliconsulting.com

Copyright © 2006 - WiTech

