The Internet of Things

- An Industrial Perspective -

Martin Elixmann Philips Research Europe (Aachen) EU Conference "Pervasive Networked Systems" March 6&7, 2006, Brussels

Consumer Benefits of Wireless Sensor Networks

Lifestyle:

Wireless sensors can enrich consumer experiences and can enable safety and privacy in the digital society

Consumer Benefits of Wireless Sensor Networks

Health:

Wireless body sensors enable pro-active healthcare

Consumer Benefits of Wireless Sensor Networks

Mobility:

Wireless sensors enable safer and more efficient driving

Consumer Benefits of Wireless Sensor Networks

Sustainability:

Wireless sensors enable better environmental conditions

Internet of Things

- Significantly more devices than current networks
- Severely limited code and ram space (e.g., highly desirable to fit the required code--MAC, IP and anything else needed to execute the embedded application-- in, for example, 32K of flash memory, using 8-bit microprocessors)
- Unobtrusive but very different user interface for configuration (e.g., using gestures or interactions involving the physical world)
- Robustness and simplicity in routing or network fabric

Overview

- Trends related to pervasive networking
 - Consumers
 - Economy
 - Applications
 - Technology
- Networking application requirements
 - Home
 - Health
 - Mobility
- Challenges of pervasive networks
 - Application
 - Network
 - Sensor nodes

Trends: European Consumers

- Individualization
- Mobility
- Lifestyle of Health and Sustainability
- Digital Society
 - -E-Commerce
 - -E-Health
 - -E-Services, incl. E-Government

Trends: Economy

- Driven by high convenience services
- Consumer market transparency
- Anticipation of consumer needs
- Memetical war for consumer attention

Trends: New application paradigms

- Personal lifestyle management
 - Attention
 - Time
 - Involvement
 - Safety
 - Energy consumption
- Personal healthcare
 - Wellness and beauty
 - Fitness
 - Risks
 - Diseases
- Cooperative driving
 - Preventive safety
 - Driver-centric convenience

Trends: Technology Re-Defined

- Systems
- Passive Tags
- Information Internet
- High Tech
- Features & Options
- Always-On
- Exposure

- Software-based services
- Wireless sensors
- Experience Internet
- Trusted Tech
- Experienced Sense & Simplicity
- Always-Responsive
- Privacy

Networked Lifestyle Requirements

- Example: Light Management
- Requirements:
 - Adaptive lighting atmospheres
 - Wireless control of lighting atmosphere of entire buildings
 - System scalability
 - Network responsiveness
 - Security
 - Integration with light sources

Networked Health Requirements

- Example: Connected senior with multiple-diseases health risk
- Requirements:
 - Continuous monitoring of multiple vital parameters for preventive healthcare
 - Local signal processing and data fusion and storage
 - Best connect wireless networking across BAN, PAN, LAN, WAN
 - Agile radio
 - Application robustness with respect to radio interference
 - Location awareness
 - Ultra low power
 - Wearable
 - Privacy and security

Networked Car Requirements

- Example: Cooperative driver
- Requirements:
 - Monitoring of driver condition with ambient electronics , e.g. stress and drowsiness
 - Traffic monitoring for preventive safety, incl.
 - car-to-car
 - car-to-roadsite communication
 - cooperative sensing
 - Security and privacy of car/driver information

Challenge: Interoperability in the Internet of Things

Research Agenda: Marriage of Internet and Control

- IP adaptation/Packet Formats and interoperability
- Addressing schemes and address management
- Network management
- Routing in dynamically adaptive topologies
- Security, including set-up and maintenance
- Application programming interface
- Discovery (of devices, of services, etc)
- Implementation considerations
 - Gateway or all-IP (e.g. 6lowpan)

Application-Driven Challenge: Distribution of Intelligence

Scalability problem:

As the number of sensors grows, network and server get overloaded

Possible solution:

- -Distribute application processing
- –Move aggregation and filtering functions (data fusion) to the network edge
- -Code distribution and management

Application-Driven Challenge: Security in Autonomous WSN

- Problem: Absence of security infrastructure
 - WSN security relies on autonomous sensors
 - no centralized online certification authorities
 - no previous trust
- Challenges
 - Security models (appropriate for each application)
 - Previous trust, no previous trust
 - Secure group formation and management
 - Location context
 - Efficient and resilient group management
 - Key distribution (static and dynamic)
 - Server-based, Pre-distribution (Random, Deterministic)

Networking Challenge: Self-Organizing Networks

Objective

• Wireless multi-hop network with short range and very low-cost devices to cover a large area

Mesh Network Advantages

- extends network coverage without increasing
 - TX power / RX sensitivity
 - less interference
- enhances transmission reliability via multiple routes
- self-configuration of network
- · dynamically adapts to changing environment
- long battery life time

Mesh Network Challenges

- ad-hoc networking with mobility support
- distributed vs. centralized control
- cross layer design: MAC / network layer
- scalability
- QoS support for delay sensitive applications
- power efficiency

Applications / Usage Scenarios

- home/building automation
- asset management
- monitoring and control

Networking Challenge: Limitations of wireless networks

- Robustness
 - ! Interference with other RF networks operating in same frequency band
 - > Interference mitigation mechanisms
- Real-time communication
 - ! No sufficient QoS support
 - Multi-hop GTS mechanism
- Reliability
 - ! Hidden terminal problem
 - Design virtual handshake mechanism
 - ! Systematic collisions possible
 - Improved randomized back-off algorithm
- Stack size
 - ! ZigBee stack (>48KB) too complex for tiny sensors
 - ZigBee "light"

Martin Elixmann, March 07, 2006, EU FP7 Pervasive Networks

Additional Challenges

- Application challenges
 - Data mining algorithms
 - Time-line for the future of WSNs and applications
 - Value creation and business models for new applications
- Network challenges
 - Light-weight protocols and middleware scalability
 - Robustness in dirty contexts
 - Availability
- Challenges for wireless sensor nodes
 - Dirty radio technology
 - Energy scavenging devices
 - From nodes to SAND to dust