Photonics in Broadband Access and the Next Generation Network

Leo Spiekman

The Next Generation Network

- Architectural evolution in core and access
- One network for all information and services
- Everything transmitted as packets

Internet Traffic Growth

Near-exponential increase in bandwidth use

- Organic growth increase in customer base
- Shift in content, away from static pages, toward multimedia embedded content and streaming video
- Larger bandwidth demand of content providers and other high end users

Traffic Type Is Changing

Packets (data) have overtaken circuits (voice)

Economies of Unified Management

Three Ways to Increase Capacity

- Increase bitrates
- More wavelengths
- More fibers

New technologies are introduced if and when they become cost-effective

25.6 Tb/s Transmission

• 2 x 42.7 Gb/s RZ-DQPSK

(A. Gnauck, Alcatel-Lucent, OFC 2007)

DWDM is Hard

- Linear Impairments
 - Chromatic Dispersion
 - Polarization Mode Dispersion
- Nonlinear Impairments
 - Self Phase Modulation
 - Four-Wave Mixing
 - Cross Phase Modulation

DWDM is Really Hard

Gets worse with higher bitrates and channel densities!

Network Layering Wildly Successful

- Ethernet: 1973
- WWW: 1989
- Google: 1998
- DWDM transmission: 1987

Network Convergence

Line Speed Convergence

Why the Push for Ethernet?

- Rigorous standardization
 - Everyting that is not allowed is prohibited
- Vendor interoperability
 - Enables fierce competition
- Rapid evolution
 - Media, speeds
- Installed base preservation

Convergence to Packets

- Core converges to IP or Ethernet
- Increasingly, services independent from transport layer
- But: Ethernet was not designed for video

Alphion Corp. Proprietary & Confidential

Different Traffic has Different Needs

Type of video

- High speed
- Long distance (video download)

QoS (streaming)

Alphion Corp. Proprietary & Confidential

Latency (interactive)

DWDM is Hard

... Also in the Next Generation Network

- Linear Impairments
- Non-Linear Impairments
- Bottom three layers of OSI model

100 Gb/s is Next?

- 100G Ethernet will come, driven by applications (e.g., video-ondemand)
- 100-Gb/s transport will have several flavors
 - Ethernet transport (IEEE) for local area and access networks
 - OTN transport (ITU-T) for widearea networks

"We're upgrading our network to 40 Gbit/s, but we will go to 100 Gbit/s as soon as possible and we hope to deploy early next year,"

-- Fred Briggs, executive vice president for network operations and technology at Verizon, Lightreading September 2007.

(G. Raybon, Alcatel-Lucent, OFC 2008)

100 Gb/s Standardization Activity

- IEEE-Higher Speed Study Group (HSSG)
 - Ethernet transport for local area and access networks
 - Presentations found at http://grouper.ieee.org/groups/802/3/hssg/index.html
- Optical Internetworking Forum (OIF)
 - Common Electrical Interface (CEI) enable high speed signaling for backplanes and chip to chip communications
- International Telecommunications Union-Telecommunications Standardization Sector (ITU-T)
 - Define standards for Optical Transport Network (OTN)

Alphion Corp. Proprietary & Confidential

100 Gb/s per channel

100G <u>parallel</u> transport (= inverse multiplexing)

100G serial transport

Choice depends on lowest cost per bit:

- Targeted system capacity (spectral efficiency)
- Targeted system *reach*
- Wavelength *management* and *networking* aspects (ROADMs, etc.)

(P. Winzer, Alcatel-Lucent, OFC 2008) Alphion Corp. Proprietary & Confidential

100 Gb/s per wavelength

RZ-DQPSK

64-QAM

(G. Raybon, Alcatel-Lucent, OFC 2008)

Towards 1 Tb/s

1 Tb/s = a lot of optical bandwidth

(E. Tangdiongga, Technical Univ. Eindhoven, ECOC 2007)

NGN in Japan

NGN: Next Generation Network.

Everything over IP

NTT East taking orders as of March 31, 2008 今なら新規にロフレッジを 月額利用料が2カ月無料 Web申レ込みなら

※ハイパーファミリータイプおよびマンシ:

利用料

NWGN: New Generation Network. New paradigm in R&D

"Development of core network control and management technologies to support Peta-bit/s-class large-scale new generation networks, unify path/packet networks, and lead international standardization activities"

Alphion Corp. Proprietary & Confidential

お申し込みは右の

提供エリア検索か

(http://nag.nict.go.jp/index_e.html)

NGN in the US

(P. Poll, Qwest, OFC 2008)

NGN in Europe

British Telecom: 21st Century Network

Convergence to everything over IP MPLS in Core

NGN in Europe

The Netherlands: All-IP

Core network based on Ethernet

IP over MPLS

Multi-Protocol Label Switching

(G. Cincotti, Roma Tre University, OFC 2006)

Future: Optical Packet Switching

Why All-Optical?

Same reason ROADMs / OXCs offer express lanes in circuit switched networks:

- Less complexity
- Lower power consumption

Fast All-Optical Switching

- SOA Switching Elements
 - High Extinction Ratio
 - Nanosecond Switching

Fast All-Optical Label Recognition

Optical Packet Switching Field Trial

Access Networks: PON or P-t-P?

PON is High Density in CO

10 Linecards x 4 PON ports x 128 ONTs = 5120 ONTs per shelf

PON Roadmap

State of the Art: GPON

GPON with Reach Extender

- Increased reach (will require an OEO or optical amp-based reach extender)
 - Near-term (tactical): avoid current practice of "remoting" the OLT to go beyond practical 20 km limit
 - Long-term (strategic): may permit consolidation of central offices (local exchanges)*
 - * D. Payne and R. Davey, "The future of fibre access systems?," *BT Technol. J.*, 20, 104-114, 2002.

GPON with Reach Extender

- Increased reach (will require an OEO or optical amp-based reach extender)
 - Near-term (tactical): avoid current practice of "remoting" the OLT to go beyond practical 20 km limit
 - Long-term (strategic): may permit consolidation of central offices (local exchanges)*
 - * D. Payne and R. Davey, "The future of fibre access systems?," *BT Technol. J.*, 20, 104-114, 2002.

(P. lannone, AT&T, OFC 2008)

Strategic Use of Reach Extender

Long-reach PONs enable CO consolidation (60 – 100 km reach)

Idealized geographic distribution of central offices

(P. lannone, AT&T, OFC 2008)

- Eliminate majority of central offices
- Powered extender box on feeder
- Possibly increase split per PON
- Saves on:
 - Powering
- OpEx
- Real estate
- This strategy benefits from WDM or TDM muxing between OLT and PON extender
 - Lots of technology options (CWDM, DWDM, higher rate TDM, λ conversion, etc)
 - case for all-optical extender box may be more compelling for multi wavelengths

Power and Space Savings

Effect on Locations for Head-Ends (OLTs)

Future: PON Capacity Increase

TDMA

Time-Division-Multiple-Access

WDMA

Wavelength-Division-

Multiple-Access

OCDMA

Code-Division-Multiple-Access

WDM-PON

OCDMA-PON

Summary

- Convergence to packet networks
- Standardization is essential
- IP in the core already here
- Future: Optical packet switching???
- Access networks are running on GPON
- Extended reach GPON is coming
- Future: WDM-PON? OCDMA-PON?

Thanks:

- David Piehler, Alphion Corp., USA
- A. Gnauck, G. Raybon, P. Winzer, Alcatel-Lucent, USA
- E. Tangdiongga, N. Calabretta, TU Eindhoven, Netherlands
- G. Cincotti, Roma Tre University, Italy
- N. Wada, NiCT, Japan
- P. Iannone, K. Reichmann, AT&T Labs Research, USA
- A. Srivastava, OneTerabit, USA