

Advisory: APT29 targets

COVID-19 vaccine

development

Version 1.0

16 July 2020

 Crown Copyright 2020

About this document

This report details recent Tactics, Techniques and Procedures (TTPs) of the group

commonly known as ‘APT29’, also known as ‘the Dukes’ or ‘Cozy Bear’.

This report provides indicators of compromise as well as detection and mitigation

advice.

Disclaimer

This report draws on information derived from multiple sources. Any NCSC findings

and recommendations made have not been provided with the intention of avoiding all

risks, and following the recommendations will not remove all such risk. Ownership of

information risks remains with the relevant system owner at all times.

Introduction

The United Kingdom’s National Cyber Security Centre (NCSC) and Canada’s

Communications Security Establishment (CSE) assess that APT29 (also known as

‘the Dukes’ or ‘Cozy Bear’) is a cyber espionage group, almost certainly part of the

Russian intelligence services. The United States’ National Security Agency (NSA)

agrees with this attribution and the details provided in this report.

The United States’ Department of Homeland Security’s Cybersecurity and

Infrastructure Security Agency (DHS CISA) endorses the technical detail and

mitigation advice provided in this advisory.

The group uses a variety of tools and techniques to predominantly target

governmental, diplomatic, think-tank, healthcare and energy targets for intelligence

gain.

Throughout 2020, APT29 has targeted various organisations involved in COVID-19

vaccine development in Canada, the United States and the United Kingdom, highly

likely with the intention of stealing information and intellectual property relating to the

development and testing of COVID-19 vaccines.

APT29 is using custom malware known as ‘WellMess’ and ‘WellMail’ to target a

number of organisations globally. This includes those organisations involved with

COVID-19 vaccine development. WellMess and WellMail have not previously been

publicly associated to APT29.

Details of techniques

Initial infection vectors

The group frequently uses publicly available exploits to conduct widespread scanning

and exploitation against vulnerable systems, likely in an effort to obtain authentication

credentials to allow further access. This broad targeting potentially gives the group

access to a large number of systems globally, many of which are unlikely to be of

immediate intelligence value. The group may maintain a store of stolen credentials in

order to access these systems in the event that they become more relevant to their

requirements in the future.

In recent attacks targeting COVID-19 vaccine research and development, the group

conducted basic vulnerability scanning against specific external IP addresses owned

by the organisations. The group then deployed public exploits against the vulnerable

services identified.

The group has been successful using recently published exploits to gain initial

footholds. Examples include, but are not limited to:

• CVE-2019-19781 Citrix [1]

https://www.ncsc.gov.uk/news/citrix-alert

• CVE-2019-11510 Pulse Secure [2]

• CVE-2018-13379 FortiGate [2]

• CVE-2019-9670 Zimbra [3]

The group likely seeks to take full advantage of a variety of new exploits when

publicised. More information about these exploits can be found in previous NCSC

advisories on Citrix and VPN vulnerabilities [1,2].

The group also uses spear-phishing to obtain authentication credentials to internet-

accessible login pages for target organisations.

Persistent access

Upon gaining access to a system, the group likely drops further tooling and/or seeks

to obtain legitimate credentials to the compromised systems in order to maintain

persistent access. The actor is likely to use anonymising services when using the

stolen credentials.

WellMess malware

In some cases, APT29 also deploys custom malware known as WellMess or WellMail

to conduct further operations on the victim’s system.

WellMess is malware written in either Golang or .NET and has been in use since at

least 2018. WellMess was first reported on by JPCERT and LAC researchers in July

2018[4][5]. It is named after one of the function names in the malware - ‘wellmess’.

WellMess is a lightweight malware designed to execute arbitrary shell commands,

upload and download files. The malware supports HTTP, TLS and DNS

communications methods.

Indicators of compromise (IOCs) for WellMess are available in the appendix.

WellMail malware

WellMail is a lightweight tool designed to run commands or scripts with the results

being sent to a hardcoded Command and Control (C2) server. The NCSC has named

this malware ‘WellMail’ due to file paths containing the word ‘mail’ and the use of server

port 25 present in the sample analysed. Similar to WellMess, WellMail uses hard-

coded client and certificate authority TLS certificates to communicate with C2 servers.

The binary is an ELF utility written in Golang which receives a command or script to

be run through the Linux shell. To our knowledge, WellMail has not been previously

named in the public domain.

IOCs for WellMail are available in the appendix.

https://www.ncsc.gov.uk/news/alert-vpn-vulnerabilities
https://www.ncsc.gov.uk/news/alert-vpn-vulnerabilities
https://nvd.nist.gov/vuln/detail/CVE-2019-9670
https://www.ncsc.gov.uk/news/citrix-alert
https://www.ncsc.gov.uk/news/alert-vpn-vulnerabilities
https://blogs.jpcert.or.jp/en/2018/07/malware-wellmes-9b78.html
https://www.botconf.eu/wp-content/uploads/2018/12/2018-Y-Ishikawa-S-Nagano-Lets-go-with-a-Go-RAT-_final.pdf

Certificate usage

WellMess and WellMail samples contained TLS certificates with the hard-coded

subjectKeyIdentifier (SKI) '0102030406', and used the subjects 'C=Tunis, O=IT' and

'O=GMO GlobalSign, Inc' respectively. These certificates can be used to identify

further malware samples and infrastructure. Servers with this GlobalSign certificate

subject may be used for other functions in addition to WellMail malware

communications.

SoreFang malware

Malware, dubbed ‘SoreFang’ by the NCSC, is a first stage downloader that uses HTTP

to exfiltrate victim information and download second stage malware. The sample

analysed by the NCSC contains the same infrastructure as a WellMess sample

(103.216.221[.]19).

It is likely that SoreFang targets SangFor devices. Industry reporting indicates that

other actors, reportedly including ‘DarkHotel’, have also targeted SangFor devices.

Therefore, not all SangFor exploitation activity relates to targeting by APT29.

Conclusion

APT29 is likely to continue to target organisations involved in COVID-19 vaccine

research and development, as they seek to answer additional intelligence questions

relating to the pandemic.

It is strongly recommended that organisations use the rules and IOCs in the appendix

in order to detect the activity detailed in this advisory.

Appendix

Indicators of compromise and detection rules

WellMess IOCs

Hashes
00654dd07721e7551641f90cba832e98c0acb030e2848e5efc0e1752c067ec07

0322c4c2d511f73ab55bf3f43b1b0f152188d7146cc67ff497ad275d9dd1c20f

03e9adae529155961f1f18212ff70181bde0e3da3d7f22961a6e2b1c9da2dd2e

0b8e6a11adaa3df120ec15846bb966d674724b6b92eae34d63b665e0698e0193

14e9b5e214572cb13ff87727d680633f5ee238259043357c94302654c546cad2

1fed2e1b077af08e73fb5ecffd2e5169d5289a825dcaf2d8742bb8030e487641

21129ad17800b11cdb36906ba7f6105e3bd1cf44575f77df58ba91640ba0cab9

2285a264ffab59ab5a1eb4e2b9bcab9baf26750b6c551ee3094af56a4442ac41

2daba469f50cd1b77481e605aeae0f28bf14cedfcd8e4369193e5e04c523bc38

49bfff6b91ee71bbf8fd94829391a36b844ffba104c145e01c92732ada52c8ba

4c8671411da91eb5967f408c2a6ff6baf25ff7c40c65ff45ee33b352a711bf9c

5ca4a9f6553fea64ad2c724bf71d0fac2b372f9e7ce2200814c98aac647172fb

797159c202ca41356bee18c5303d37e9d2a43ca43d0ce02e1fd9e7045b925d11

7c39841ba409bce4c2c35437ecf043f22910984325c70b9530edf15d826147ee

84b846a42d94431520d3d2d14262f3d3a5d96762e56b0ae471b853d1603ca403

8749c1495af4fd73ccfc84b32f56f5e78549d81feefb0c1d1c3475a74345f6a8

92a856a2216e107496ee086e1c8cfe14e15145e7a247539815fd37e5a18b84d9

93e9383ae8ad2371d457fc4c1035157d887a84bbfe66fbbb3769c5637de59c75

953b5fc9977e2d50f3f72c6ce85e89428937117830c0ed67d468e2d93aa7ec9a

a03a71765b1b0ea7de4fbcb557dcfa995ff9068e92db9b2dada9dd0841203145

a117b2a904c24df62581500176183fbc282a740e4f11976cdfc01fe664a02292

a3ca47e1083b93ea90ace1ca30d9ef71163e8a95ee00500cbd3fd021da0c18af

b75a5be703d9ba3721d046db80f62886e10009b455fa5cdfd73ce78f9f53ec5a

bec1981e422c1e01c14511d384a33c9bcc66456c1274bbbac073da825a3f537d

c1a0b73bad4ca30a5c18db56c1cba4f5db75f3d53daf62ddc598aae2933345f3

d7e7182f498440945fc8351f0e82ad2d5844530ebdba39051d2205b730400381

dd3da0c596fd699900cdd103f097fe6614ac69787edfa6fa84a8f471ecb836bb

e329607379a01483fc914a47c0062d5a3a8d8d65f777fbad2c5a841a90a0af09

e3d6057b4c2a7d8fa7250f0781ea6dab4a977551c13fe2f0a86f3519b2aaee7a

f3af394d9c3f68dff50b467340ca59a11a14a3d56361e6cffd1cf2312a7028ad

f622d031207d22c633ccec187a24c50980243cb4717d21fad6588dacbf9c29e9

fd3969d32398bbe3709e9da5f8326935dde664bbc36753bd41a0b111712c0950

IP Addresses
103.103.128[.]221

103.13.240[.]46

103.205.8[.]72

103.216.221[.]19

103.253.41[.]102

103.253.41[.]68

103.253.41[.]82

103.253.41[.]90

103.73.188[.]101

111.90.146[.]143

111.90.150[.]176

119.160.234[.]163

119.160.234[.]194

119.81.173[.]130

119.81.178[.]105

120.53.12[.]132

122.114.197[.]185

122.114.226[.]172

141.255.164[.]29

141.98.212[.]55

145.249.107[.]73

146.0.76[.]37

149.202.12[.]210

169.239.128[.]110

176.119.29[.]37

178.211.39[.]6

185.120.77[.]166

185.145.128[.]35

185.99.133[.]112

191.101.180[.]78

192.48.88[.]107

193.182.144[.]105

202.59.9[.]59

209.58.186[.]196

209.58.186[.]197

209.58.186[.]240

220.158.216[.]130

27.102.130[.]115

31.170.107[.]186

31.7.63[.]141

45.120.156[.]69

45.123.190[.]167

45.123.190[.]168

45.152.84[.]57

46.19.143[.]69

5.199.174[.]164

66.70.247[.]215

79.141.168[.]109

81.17.17[.]213

85.93.2[.]116

Yara Rules

rule wellmess_dotnet_unique_strings {

 meta:

 description = "Rule to detect WellMess .NET samples based on

unique strings and function/variable names"

 author = "NCSC"

 hash =

"2285a264ffab59ab5a1eb4e2b9bcab9baf26750b6c551ee3094af56a4442ac41"

 strings:

 $s1 = "MaxPostSize" wide

 $s2 = "HealthInterval" wide

 $s3 = "Hello from Proxy" wide

 $s4 = "Start bot:" wide

 $s5 = "Choise" ascii wide

 $s7 = "FromNormalToBase64" ascii

 $s8 = "FromBase64ToNormal" ascii

 $s9 = "ConvBytesToWords" ascii

 $s10 = "WellMess" ascii

 $s11 = "chunksM" ascii

 condition:

 uint16(0) == 0x5a4d and uint16(uint16(0x3c)) == 0x4550 and 3

of them

}

rule wellmess_botlib_function_names {

 meta:

 description = "Rule to detect WellMess Golang samples based on

the function names used by the actor"

 author = "NCSC"

 hash =

"8749c1495af4fd73ccfc84b32f56f5e78549d81feefb0c1d1c3475a74345f6a8"

 strings:

 $s1 = "botlib.wellMess" ascii wide

 $s2 = "botlib.saveFile" ascii wide

 $s3 = "botlib.reply" ascii wide

 $s4 = "botlib.init" ascii wide

 $s5 = "botlib.generateRandomString" ascii wide

 $s6 = "botlib.encrypt" ascii wide

 $s7 = "botlib.deleteFile" ascii wide

 $s8 = "botlib.convertFromString" ascii wide

 $s9 = "botlib.chunksM" ascii wide

 $s10 = "botlib.Work" ascii wide

 $s11 = "botlib.UnpackB" ascii wide

 $s12 = "botlib.Unpack" ascii wide

 $s13 = "botlib.UDFile" ascii wide

 $s14 = "botlib.Split" ascii wide

 $s15 = "botlib.Service" ascii wide

 $s16 = "botlib.SendMessage" ascii wide

 $s17 = "botlib.Send.func1" ascii wide

 $s18 = "botlib.Send" ascii wide

 $s19 = "botlib.ReceiveMessage" ascii wide

 $s20 = "botlib.RandStringBytes" ascii wide

 $s21 = "botlib.RandInt" ascii wide

 $s22 = "botlib.Post" ascii wide

 $s23 = "botlib.Parse" ascii wide

 $s24 = "botlib.Pad" ascii wide

 $s25 = "botlib.Pack" ascii wide

 $s26 = "botlib.New" ascii wide

 $s27 = "botlib.KeySizeError.Error" ascii wide

 $s28 = "botlib.Key" ascii wide

 $s29 = "botlib.Join" ascii wide

 $s30 = "botlib.GetRandomBytes" ascii wide

 $s31 = "botlib.GenerateSymmKey" ascii wide

 $s32 = "botlib.FromNormalToBase64" ascii wide

 $s33 = "botlib.EncryptText" ascii wide

 $s34 = "botlib.Download" ascii wide

 $s35 = "botlib.Decipher" ascii wide

 $s36 = "botlib.Command" ascii wide

 $s37 = "botlib.Cipher" ascii wide

 $s38 = "botlib.CalculateMD5Hash" ascii wide

 $s39 = "botlib.Base64ToNormal" ascii wide

 $s40 = "botlib.AES_Encrypt" ascii wide

 $s41 = "botlib.AES_Decrypt" ascii wide

 $s42 = "botlib.(*rc6cipher).Encrypt" ascii wide

 $s43 = "botlib.(*rc6cipher).Decrypt" ascii wide

 $s44 = "botlib.(*rc6cipher).BlockSize" ascii wide

 $s45 = "botlib.(*KeySizeError).Error" ascii wide

 $s46 = "botlib.DownloadDNS" ascii wide

 $s47 = "botlib.JoinDnsChunks" ascii wide

 $s48 = "botlib.SendDNS" ascii wide

 $s49 = "botlib.CreateDNSName" ascii wide

 condition:

 ((uint16(0) == 0x5a4d and uint16(uint16(0x3c)) == 0x4550) or

uint32(0) == 0x464c457f) and any of them

}

rule wellmess_certificate_base64_snippets {

 meta:

 description = "Rule for detection of WellMess based on base64

snippets of certificates used"

 author = "NCSC"

 hash =

"8749c1495af4fd73ccfc84b32f56f5e78549d81feefb0c1d1c3475a74345f6a8"

 strings:

 $a1 = "BgNVHQ4EBwQFAQIDBA"

 $a2 = "YDVR0OBAcEBQECAwQG"

 $a3 = "GA1UdDgQHBAUBAgMEB"

 $b1 = "BgNVBAYTBVR1bmlzMQswCQYDVQQKEwJJVD"

 $b2 = "YDVQQGEwVUdW5pczELMAkGA1UEChMCSVQx"

 $b3 = "GA1UEBhMFVHVuaXMxCzAJBgNVBAoTAklUM"

 condition:

 ((uint16(0) == 0x5a4d and uint16(uint16(0x3c)) == 0x4550) or

uint32(0) == 0x464c457f) and any of ($a*) and any of ($b*)

}

rule wellmess_regex_used_for_parsing_beacons {

 meta:

 description = "Detects WellMess Golang and .NET samples based

on the regex they used to parse commands and beacon information"

 author = "NCSC"

 hash =

"8749c1495af4fd73ccfc84b32f56f5e78549d81feefb0c1d1c3475a74345f6a8"

 strings:

 $a =

"fileName:(?<fn>.*?)\\sargs:(?<arg>.*)\\snotwait:(?<nw>.*)" ascii

wide

 $b = "<;(?<key>[^;]*?);>(?<value>[^<]*?)<;[^;]*?;>" ascii wide

 condition:

 ((uint16(0) == 0x5a4d and uint16(uint16(0x3c)) == 0x4550) or

uint32(0) == 0x464c457f) and any of them

}

WellMail IOCs

Hashes

Hashes
83014ab5b3f63b0253cdab6d715f5988ac9014570fa4ab2b267c7cf9ba237d18 (UPX)

0c5ad1e8fe43583e279201cdb1046aea742bae59685e6da24e963a41df987494

(Unpacked)

IP Addresses (Malware)
103.216.221.19

IP Addresses (‘GlobalSign’ certificate, operated by APT29 but not necessarily used
for WellMail malware communications)
119.81.184[.]11

185.225.226[.]16

188.241.68[.]137

45.129.229[.]48

Yara Rules

rule wellmail_unique_strings {

 meta:

 description = "Rule for detection of WellMail based on unique

strings contained in the binary"

 author = "NCSC"

 hash =

"0c5ad1e8fe43583e279201cdb1046aea742bae59685e6da24e963a41df987494"

 strings:

 $a = "C:\\Server\\Mail\\App_Data\\Temp\\agent.sh\\src"

 $b = "C:/Server/Mail/App_Data/Temp/agent.sh/src/main.go"

 $c = "HgQdbx4qRNv"

 $d = "042a51567eea19d5aca71050b4535d33d2ed43ba"

 $e = "main.zipit"

 $f = "@[^\\s]+?\\s(?P<tar>.*?)\\s"

 condition:

 uint32(0) == 0x464C457F and 3 of them

}

rule wellmail_certificate_base64_snippets {

 meta:

 description = "Rule for detection of WellMail based on base64

snippets of certificates used"

 author = "NCSC"

 hash =

"0c5ad1e8fe43583e279201cdb1046aea742bae59685e6da24e963a41df987494"

 strings:

 $a1 = "BgNVHQ4EBwQFAQIDBA"

 $a2 = "YDVR0OBAcEBQECAwQG"

 $a3 = "GA1UdDgQHBAUBAgMEB"

 $b1 = "BgNVBAoTE0dNTyBHbG9iYWxTaWduLCBJbm"

 $b2 = "YDVQQKExNHTU8gR2xvYmFsU2lnbiwgSW5j"

 $b3 = "GA1UEChMTR01PIEdsb2JhbFNpZ24sIEluY"

 condition:

 uint32(0) == 0x464C457F and any of ($a*) and any of ($b*)

}

SoreFang IOCs

Hashes
58d8e65976b53b77645c248bfa18c3b87a6ecfb02f306fe6ba4944db96a5ede2

65495d173e305625696051944a36a031ea94bb3a4f13034d8be740982bc4ab75

a4b790ddffb3d2e6691dcacae08fb0bfa1ae56b6c73d70688b097ffa831af064

IP Addresses (Malware)
103.216.221[.]19

Yara Rules

rule sorefang_directory_enumeration_output_strings {

 meta:

 description = "Rule to detect SoreFang based on formatted

string output for directory enumeration"

 author = "NCSC"

 hash =

"58d8e65976b53b77645c248bfa18c3b87a6ecfb02f306fe6ba4944db96a5ede2"

 strings:

 $ = "----------All usres directory----------"

 $ = "----------Desktop directory----------"

 $ = "----------Documents directory----------"

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550) and

any of them

}

rule sorefang_encryption_key_2b62 {

 meta:

 description = "Rule to detect SoreFang based on hardcoded

encryption key"

 author = "NCSC"

 hash =

"58d8e65976b53b77645c248bfa18c3b87a6ecfb02f306fe6ba4944db96a5ede2"

 strings:

 $ = "2b6233eb3e872ff78988f4a8f3f6a3ba"

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550) and

any of them

}

rule sorefang_encryption_key_schedule {

 meta:

 description = "Rule to detect SoreFang based on the key

schedule used for encryption"

 author = "NCSC"

 hash =

"58d8e65976b53b77645c248bfa18c3b87a6ecfb02f306fe6ba4944db96a5ede2"

 strings:

 $ = {C7 05 ?? ?? ?? ?? 63 51 E1 B7 B8 BC D1 3B 01 8B 48 FC

81 E9 47 86 C8 61 89 08 83 C0 04 3D ?? ?? ?? ?? 7E EB 33 D2 33 C9

B8 2C 00 00 00 89 55 D4 33 F6 89 4D D8 33 DB 3B F8 0F 4F C7 8D 04

40 89 45 D0 83 F8 01 7C 4F 0F 1F 80 00 00 00 00}

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550) and

any of them

}

rule sorefang_command_elem_cookie_ga_boundary_string {

 meta:

 description = "Rule to detect SoreFang based on scheduled task

element and Cookie header/boundary strings"

 author = "NCSC"

 hash =

"58d8e65976b53b77645c248bfa18c3b87a6ecfb02f306fe6ba4944db96a5ede2"

 strings:

 $ = "<Command>" wide

 $ = "Cookie:_ga="

 $ = "------974767299852498929531610575"

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550) and 2

of them

}

rule sorefang_encryption_round_function {

 meta:

 description = "Rule to detect SoreFang based on the encryption

round function"

 author = "NCSC"

 hash =

"58d8e65976b53b77645c248bfa18c3b87a6ecfb02f306fe6ba4944db96a5ede2"

 strings:

 $ = {8A E9 8A FB 8A 5D 0F 02 C9 88 45 0F FE C1 0F BE C5 88 6D

F3 8D 14 45 01 00 00 00 0F AF D0 0F BE C5 0F BE C9 0F AF C8 C1 FA

1B C0 E1 05 0A D1 8B 4D EC 0F BE C1 89 55 E4 8D 14 45 01 00 00 00

0F AF D0 8B C1}

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550) and

any of them

}

rule sorefang_add_random_commas_spaces {

 meta:

 description = "Rule to detect SoreFang based on function that

adds commas and spaces"

 author = "NCSC"

 hash =

"58d8e65976b53b77645c248bfa18c3b87a6ecfb02f306fe6ba4944db96a5ede2"

 strings:

 $ = {E8 ?? ?? ?? ?? B9 06 00 00 00 99 F7 F9 8B CE 83 FA 04 7E

09 6A 02 68 ?? ?? ?? ?? EB 07 6A 01 68 ?? ?? ?? ??}

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550) and

any of them

}

rule sorefang_modify_alphabet_custom_encode {

 meta:

 description = "Rule to detect SoreFang based on arguments

passed into custom encoding algorithm function"

 author = "NCSC"

 hash =

"58d8e65976b53b77645c248bfa18c3b87a6ecfb02f306fe6ba4944db96a5ede2"

 strings:

 $ = {33 C0 8B CE 6A 36 6A 71 66 89 46 60 88 46 62 89 46 68 66

89 46 64}

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550) and

any of them

}

rule sorefang_custom_encode_decode {

 meta:

 description = "Rule to detect SoreFang based on the custom

encoding/decoding algorithm function"

 author = "NCSC"

 hash =

"58d8e65976b53b77645c248bfa18c3b87a6ecfb02f306fe6ba4944db96a5ede2"

 strings:

 $ = {55 8B EC 8B D1 53 56 8B 75 08 8B DE 80 42 62 FA 8A 4A 62

66 D3 EB 57 3A 5A 5C 74 0F}

 $ = {3A 5A 5D 74 0A 3A 5A 58 74 05 3A 5A 59 75 05 FE C1 88 4A

62 8A 4A 62 B8 01 00 00 00}

 $ = {8A 46 62 84 C0 74 3E 3C 06 73 12 0F B6 C0 B9 06 00 00 00

2B C8 C6 46 62 06 66 D3 66 60 0F B7 4E 60}

 $ = {80 3C 38 0D 0F 84 93 01 00 00 C6 42 62 06 8B 56 14 83 FA

10 72 04 8B 06}

 $ = {0F BE 0C 38 8B 45 EC 0F B6 40 5B 3B C8 75 07 8B 55 EC B3

3E}

 $ = {0F BE 0C 38 8B 45 EC 0F B6 40 5E 3B C8 75 0B 8B 55 EC D0

EB C6 42 62 05}

 $ = {8B 55 EC 0F BE 04 38 0F B6 DB 0F B6 4A 5F 3B C1 B8 3F 00

00 00 0F 44 D8}

 $ = {8A 4A 62 66 8B 52 60 66 D3 E2 0F B6 C3 66 0B D0 8B 45 EC

66 89 50 60 8A 45 F3 02 C1 88 45 F3 3C 08 72 2E 04 F8 8A C8 88 45

F3 66 D3 EA 8B 4D 08 0F B6 C2 50}

 $ = {3A 5A 5C 74 0F 3A 5A 5D 74 0A 3A 5A 58 74 05 3A 5A 59 75

05 FE C1 88 4A 62}

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550) and

any of them

}

rule sorefang_remove_chars_comma_space_dot {

 meta:

 description = "Rule to detect SoreFang based on function that

removes commas, spaces and dots"

 author = "NCSC"

 hash =

"58d8e65976b53b77645c248bfa18c3b87a6ecfb02f306fe6ba4944db96a5ede2"

 strings:

 $ = {8A 18 80 FB 2C 74 03 88 19 41 42 40 3B D6 75 F0 8B 5D 08}

 $ = {8A 18 80 FB 2E 74 03 88 19 41 42 40 3B D6 75 F0 8B 5D 08}

 $ = {8A 18 80 FB 20 74 03 88 19 41 42 40 3B D6 75 F0 8B 5D 08}

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550)

and all of them

}

rule sorefang_disk_enumeration_strings {

 meta:

 description = "Rule to detect SoreFang based on disk

enumeration strings"

 author = "NCSC"

 hash =

"a4b790ddffb3d2e6691dcacae08fb0bfa1ae56b6c73d70688b097ffa831af064"

strings:

 $ = "\x0D\x0AFree on disk: "

 $ = "Total disk: "

 $ = "Error in GetDiskFreeSpaceEx\x0D\x0A"

 $ = "\x0D\x0AVolume label: "

 $ = "Serial number: "

 $ = "File system: "

 $ = "Error in GetVolumeInformation\x0D\x0A"

 $ = "I can not het information about this disk\x0D\x0A"

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550) and

all of them

}

External Reading

[1] https://www.ncsc.gov.uk/news/citrix-alert
[2] https://www.ncsc.gov.uk/news/alert-vpn-vulnerabilities

[3] https://nvd.nist.gov/vuln/detail/CVE-2019-9670

[4] https://blogs.jpcert.or.jp/en/2018/07/malware-wellmes-9b78.html

[5] https://www.botconf.eu/wp-content/uploads/2018/12/2018-Y-Ishikawa-S-Nagano-

Lets-go-with-a-Go-RAT-_final.pdf

Mitigation

A variety of mitigations will be of use in defending against the campaigns detailed in this

report:

• Protect your devices and networks by keeping them up to date: use the latest

supported versions, apply security patches promptly, use anti-virus and scan

regularly to guard against known malware threats. See NCSC

Guidance: https://www.ncsc.gov.uk/guidance/mitigating-malware.

• Use multi-factor authentication (/2-factor authentication/two-step

authentication) to reduce the impact of password compromises. See NCSC

guidance: https://www.ncsc.gov.uk/guidance/multi-factor-authentication-online-

services https://www.ncsc.gov.uk/guidance/setting-two-factor-authentication-2fa

• Treat people as your first line of defence. Tell staff how to report suspected

phishing emails, and ensure they feel confident to do so. Investigate their reports

promptly and thoroughly. Never punish users for clicking phishing links or opening

attachments. See NCSC Guidance: https://www.ncsc.gov.uk/phishing

• Set up a security monitoring capability so you are collecting the data that will be

needed to analyse network intrusions. See NCSC

Guidance: https://www.ncsc.gov.uk/guidance/introduction-logging-security-

purposes.

• Set up a security monitoring capability so you are collecting the data that will be

needed to analyse network intrusions. See NCSC

Guidance: https://www.ncsc.gov.uk/guidance/introduction-logging-security-

purposes.

• Prevent and detect lateral movement in your organisation’s networks. See

NCSC Guidance: https://www.ncsc.gov.uk/guidance/preventing-lateral-movement

https://www.ncsc.gov.uk/news/citrix-alert
https://www.ncsc.gov.uk/news/alert-vpn-vulnerabilities
https://nvd.nist.gov/vuln/detail/CVE-2019-9670
https://blogs.jpcert.or.jp/en/2018/07/malware-wellmes-9b78.html
https://www.botconf.eu/wp-content/uploads/2018/12/2018-Y-Ishikawa-S-Nagano-Lets-go-with-a-Go-RAT-_final.pdf
https://www.botconf.eu/wp-content/uploads/2018/12/2018-Y-Ishikawa-S-Nagano-Lets-go-with-a-Go-RAT-_final.pdf
https://www.ncsc.gov.uk/guidance/mitigating-malware
https://www.ncsc.gov.uk/guidance/multi-factor-authentication-online-services
https://www.ncsc.gov.uk/guidance/multi-factor-authentication-online-services
https://www.ncsc.gov.uk/guidance/setting-two-factor-authentication-2fa
https://www.ncsc.gov.uk/phishing
https://www.ncsc.gov.uk/guidance/introduction-logging-security-purposes
https://www.ncsc.gov.uk/guidance/introduction-logging-security-purposes
https://www.ncsc.gov.uk/guidance/introduction-logging-security-purposes
https://www.ncsc.gov.uk/guidance/introduction-logging-security-purposes
https://www.ncsc.gov.uk/guidance/preventing-lateral-movement

